• Complex
  • Title
  • Author
  • Keyword
  • Abstract
  • Scholars
Search

Author:

Wang, Xueli (Wang, Xueli.) | Wei, Jinjia (Wei, Jinjia.) (Scholars:魏进家) | Deng, Yueping (Deng, Yueping.) | Wu, Zan (Wu, Zan.) | Sunden, Bengt (Sunden, Bengt.)

Indexed by:

SCIE EI Scopus

Abstract:

To further improve the flat-type loop heat pipe (LHP) performance, this study evaluates the practical potential of use of highly enhanced boiling structures. It is found that in our proposed new heat pipe (NHP) system, the working fluid from the evaporator outlet to the condenser inlet is in a liquid-vapor two phase flow, which is different from the classical LHP theory. A new P-T diagram is developed to better understand the thermal and hydraulic process during the NHP steady operation. In this study, by using the laser ablation technique two different types of micro- and nanoscale hybrid structures are synthesized on the boiling pool substrate. It is indicated that the formed valleys with a larger opening width play an important role in more effectively improving the bubble nucleation and bubble growth at the micrometer sites, which can subsequently lead to an increased number of active nucleation sites. The best loop performance is obtained with the micro-cone structured substrate at a heat load of 140 W, at which the maximum boiling pool heat transfer coefficient of 42.17 kW/m(2).K is achieved. Compared with the polishing Cu substrate, it is enhanced by 110%. When maintaining the boiling pool temperature lower than 85 degrees C, the proposed new heat pipe system can tolerate a maximum heat flux of 35.12 W/cm(2), which is larger than that of the most conventional LHPs with methanol as the working fluid. (C) 2018 Elsevier Ltd. All rights reserved.

Keyword:

Heat pipe performance enhancement Heat transfer coefficient Micro/nano hybrid structures Thermal and hydraulic process Thermal resistance

Author Community:

  • [ 1 ] [Wang, Xueli; Wei, Jinjia; Deng, Yueping] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
  • [ 2 ] [Wei, Jinjia] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
  • [ 3 ] [Wu, Zan; Sunden, Bengt] Lund Univ, Dept Energy Sci, Box 118, SE-22100 Lund, Sweden
  • [ 4 ] [Wang, Xueli]Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
  • [ 5 ] [Wei, Jinjia]Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
  • [ 6 ] [Deng, Yueping]Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
  • [ 7 ] [Wei, Jinjia]Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
  • [ 8 ] [Wu, Zan]Lund Univ, Dept Energy Sci, Box 118, SE-22100 Lund, Sweden
  • [ 9 ] [Sunden, Bengt]Lund Univ, Dept Energy Sci, Box 118, SE-22100 Lund, Sweden

Reprint Author's Address:

  • 魏进家

    Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China.

Show more details

Related Keywords:

Related Article:

Source :

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

ISSN: 0017-9310

Year: 2018

Volume: 127

Page: 1248-1263

4 . 3 4 6

JCR@2018

5 . 5 8 4

JCR@2020

ESI Discipline: ENGINEERING;

ESI HC Threshold:108

JCR Journal Grade:2

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 11

SCOPUS Cited Count: 16

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

FAQ| About| Online/Total:709/167082063
Address:XI'AN JIAOTONG UNIVERSITY LIBRARY(No.28, Xianning West Road, Xi'an, Shaanxi Post Code:710049) Contact Us:029-82667865
Copyright:XI'AN JIAOTONG UNIVERSITY LIBRARY Technical Support:Beijing Aegean Software Co., Ltd.